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A coherent method is given for generating to arbitrary order, the toroidally symmetric, 
polynomial multipole solutions of the vector Laplace (Grad-Shafranov operator) equation. In 
a source-free region, the toroidal component of a toroidally symmetric magnetic vector poten- 
tial may be conveniently expanded in terms of these multipoles which at large aspect ratio 
reduce to the simple cylindrical form (X+ iZ)m. The set of multipoles considered in previous 
work is shown to be incomplete and additional ones are derived which partially resolve this 
difficulty. The expansion technique is criticized, and several practical examples are given. 
t!!’ 1986 Academic Press, Inc. 

1. INTRODUCTION 

We consider the toroidally symmetric multipole solutions of the toroidal com- 
ponent of the vector Laplace equation V x V x A = 0. When expressed in terms of 
the poloidal magnetic flux this equation is d*Y = 0, where A* is the 
Grad-Shafranov operator. Of all the possible forms of multipole solutions of this 
equation, one set is particularly conveient for the expansion of arbitrary solutions 
in a finite, source free region. In cylindrical coordinates the multipoles of this set are 
finite positive order polynomials. In contrast to other expansion functions, they are 
easily visualized, physically interpreted, and rapidly calculated. 

As shown by Okada et al. [l] and others, the relation between each multipole 
and plasma shape and position is simple. The 2 symmetric dipole term yields the 
uniform vertical equilibrium magnetic field necessary to counter the radial hoop 
force of a plasma and determines its radial position. The Z antisymmetric dipole 
term yields a radial field which determines the vertical position of the plasma. The 
quadrapole terms determine the plasma ellipticity, the hexapole terms the 
triangularity, and so on. This feature is convenient in the initial phase of machine 
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design as one may optimize the plasma shape and size without going into the 
details of the coil structure. In fact, given the known effect that each multipole has 
on plasma shape and position, coil systems are often designed to produce given 
polynomial multipoles [2] yielding simple scaling and shaping rules for design pur- 
poses, and improved control over plasma shape and position during machine 
operation. 

The PEST 2-D ideal MHD, free boundary equilibrium code can optionally use 
either thin ring coils or a multipole expansion to define the applied poloidal field. 
Not much computational savings is had with multipoles over thin ring coils as the 
applied flux need only be given on the boundary of the computation region. 
Further, it may be calculated at the beginning and stored. The bulk of the com- 
putation time is taken up by solving the internal problem with these given boun- 
dary conditions. In instances where applied field is varied, for example when a par- 
ticular magnetic axis is desired, some minor savings may be obtained. The two 
methods of defining the applied field are otherwise equivalent in the computation as 
plasma parameters vary. However, coils which lie too near the solution region can- 
not be modeled with multipoles. In this case a combination of both methods 
sometimes can be used. The main reason for the implementation of a multipole 
model in the code is their previously mentioned utility in machine design. 

Another example of the utility of multipoles is the theoretical analysis of 
equilibria of Greene et al. [S] based on aspect ratio orderings, where a simple 
expression for the applied fields is needed. 

It is often desirable to know the contribution of eddy currents to magnetics 
measurements. The precise locations and values of image currents may be unknown 
yet their effect can often be expressed in terms of these multipoles. These eddy 
current fields may be defined by giving the transfer function (step function) 
response of each multipole component of the field when excited by a given coil 
group. These transfer functions can be determined by making appropriate 
measurements. The field which results from some arbitrary combination of image 
currents is then quickly calculated without resort to a detailed and often inaccurate 
model of the structure in which they flow. The Princeton Beta Experiment (PBX) 
surface analysis code SURFAS sucessfully implements a transfer function eddy 
current model via multipoles. This code runs between shots and cannot afford the 
time or space necessary to use a more complex model. 

Multipoles are especially useful in the diagnosis of plasma equilibria. Multipole 
moments of equilibrium quantities such as pressure and toroidal current density 
may be related to poloidal field measurements via the divergence theorem. 
Zakharov and Shafranov [3] originated this method considering only 2 symmetric 
multipoles. Shkarofsky [4] generalized it to include antisymmetric multipoles. 

Although a number of authors [l-7] have either exhibited or given derivations 
of partial sets of these multipoles, the multipoles considered by them are not com- 
plete. An arbitrary solution of the vector Laplace equation, subject to the natural 
boundary conditions of the physical problem, cannot be fully expressed as a series 
in the multipoles of their set. In this work we derive another set of multipoles which 
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partially resolve this difficulty and allow an arbitrary field to be more accurately 
approximated with a multipole expansion. 

The plan of this paper is as follows. In Section 2, We give a new, more general 
derivation of the multipoles considered by previous authors, together with a stan- 
dard norm. The derivation applies to multipoles of arbitrary order and symmetry 
about the midplane. It connects the multipoles to well known solutions of the vec- 
tor Laplace equation, and suggests the existence of an independent set of mul- 
tipoles. 

In Section 3, We develop this additional set of multipoles using the derivation of 
Section 2. We give a nominal argument for their necessity in the expansion of an 
arbitrary field by exhibiting a related expansion for the Green’s function of the 
problem. 

In Section 4, We study a commonly used expansion in terms of the multipoles 
with regard to its validity in a practical device. We find that an improvement in 
error results when the augmented set of multipoles is used. 

Finally, we give the algebraic form of the first few of the multipoles and their 
conjugate functions in a table at the end of this article. 

2. DERIVATION OF THE MULTIPOLES 

Here we use three coordinate systems, spherical (p, 8, #), cylindrical (R, 4, Z), 
where R = p sin 6’ and Z = p cos 0 and Cartesian (X, Z), where X = R - Ro. R, is a 
given arbitrary expansion point, typically the canonical major radius of a toroidal 
device (Fig. 1). The principle determining characteristic of these axisymmetric, 4 
independent multipoles is that at large aspect ratio, (X2 + Z2)/Ri < 1, they reduce 
to the form of simple Cartesian multipoles 

(X+ iZjm 

Rlr2 ’ 
(1) 

RO X R 

FIG. 1. Coordinate systems used are spherical (p, 8, $), cylindrical (R, 4, Z), and Cartesian (X, Z), 
where X=R-Ro. 
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m > 0 is the Cartesian multipole number. The denominator is chosen to get con- 
venient dimensions. 

The poloidal magnetic field may be defined in a source free region by 

J&I = 
Vq+xVY VQi 

2rL =5? (2) 

Here Y= -2nRA, is the poloidal magnetic flux and @ is the magnetic potential 
conjugate to Y. 

In cylindrical coordinates and assuming toroidal symmetry (a/ad = 0), 
V x Bpo, = 0 and V. BP,,, = 0 yield respectively the homogeneous Grad-Shafranov 
operator equation for Y 

Y=O 

and Laplace’s equation for @ 

(3) 

(4) 

At large aspect ratio both of the above equations reduce to the canonical Cartesian 
Laplace equation in X and Z whose solutions are (1). This suggests that 
appropriate linear combinations of the solutions of (3) and (4) can be separately 
found which also reduce to the form of (1). In spherical coordinates (3) and (4) are 

,a9 a i a 

( 3 
-- P ap2+Sines sine ae =O 

and 

a ,a@ I a 
&7 

-- 
2&i + sin e de ( ) 

sin eg = 0. 

The equation for Y is then satisfied for n > 2 by 

F,(p, e) = C,p” sin ep;- ,(COS e) 

or 

H,(p, 0) = D,p’ -” sin eP;- l(~~~ e). 

For n > 2 the conjugate @ are respectively 

G,(p, e)=nCnp”-l~,_I(~~~e) 

(5) 

(6) 

(7) 

63) 

(9) 
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or 

I,@, 6) = -(n - 1) D,p-“P,- ,(cos 0). (10) 

The I’; are the associated Legendre functions. C, and D, are arbitrary constants. 
The poloidal flux is subject to the physically natural homogeneous boundary 

conditions 

lim Y(p, 0) = iirnE W(p, 0) = 0. 
8-O 

We therefore do not include the Q,(COS 0) solutions of (5) which diverge 
logarithmically for 8 + 0 and 8 -+ II. We must further have 

;mo Y(p,e)= lim qp.e)=o. 
P-m 

This implies that expansions in both the F, and the H, are needed in appropriate 
regions of space to everywhere express Y. We neglect momentarily the H, solutions 
which depend on negative powers of p and discuss their inclusion in Section 3. 
Previous studies of the multipoles did not consider the latter functions. 

The P; are generated by the Rodrigues’ formula [S] 

p (&p)” d” 
n --(l-x’)” 

2”n! df 

and by 

CYX) = (- 1 )“(l x X2P2-g P”(X). 

(11) 

(12) 

The F,,, when expressed in cylindrical (R, 2) coordinates, are finite positive 
integer order polynomials. We normalize the F, so that the coefficient of the high 
order term in R is equal to unity. That is, for odd n, 

c = -2n--I( - 1)’ ‘+‘)“((n+ 1)/2)!((n-3)/2)! 
” 

(n+ l)! 
(13) 

and for even n 

c =2”-‘(-1)“‘2(n/2)!((n-2)/2)! 
n n! 

(14) 

This defines the F,, and G, for all n > 2. To obtain the desired large aspect ratio 
expansions we need to define appropriate n < 2 extensions of formulae (7) through 
(10). These may be made up out of the primitive solutions of equations (5) (i.e., 
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Constant, p, cos 0) and (6) (i.e., Constant, QO(cos 0), l/p). We select those which 
give simple results. 
The first few F,, in cylindrical coordinates are then 

Fo= 1, 

F, = 0, 

Fz = R2, 

Fj = R=Z, (15) 
F4 = R2(R2 - 4Z=), 

F, = (R2Z(3R2 - 4Z2))/3, 

F6 = R2(R4 - 12R2Z2 + 8Z4). 

The F,, and G, can also be obtained by substitution of a series of the appropriate 
form into Eqs. (3) and (4) respectively [4]. In general series form the F, are for 
n > 2, 

n-2 

F,(R, Z)= 1 A; R”-” Z”. (16) 
m=O 

An = -(n+2-m)(n-m)An 
m m(m- 1) m-2. (17) 

The conjugate G, functions which are needed [3,4] for calculation of moments 
of the toroidal current density and obey 

RaG,/az = -aF”/aR 

and 

RaGJaR = aF,,/aZ, 

are similarily given by 

Go=O, 

G, = -1, 

and for n > 2, 

Z n-2 
Gn=z C 

(n-m) 
m=O (m AiLR”-mZ 

(18) 

(19) 

The last term appears only if n is odd. 

5x1/64/2-10 
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The F, do not have the desired large aspect ratio form. The linear combinations 
of the F, which yield the cylindrical multipoles upon expansion about R. are given 
in a generalized form, which we will later apply to the G,, H,, and I,, for even n by 

,!o (- 1)“-‘R;-2’ 
0 
‘I FdR Z) 

and for odd n by 

Yu,+ = --$ i (-1)“-‘R:,-2’ 
I= 1 

ZlF,,+,(R,Z)-3. 

(20) 

(21) 

Here (7) are the binomial coefficients and m is the Cartesian multipole number 
associated with n. For even and odd n respectively 

m = n/2, 

m = (n - 1)/2. 
(22) 

L’, in Eq. (21) is a constant term which cancels the preceeding sum when R = R, 
and Z = 0. It vanishes when Eq. (21) is applied to the F,,. The large aspect ratio 
expansion of Eqs. (20) and (21) yields for even n 

271(X+ iZ)m 
T +iYL= mRm-2 . 

0 
(23) 

Our choice of normalization for the YT is now justified firstly by the fact that 
Y = B, Y: yields a uniform vertical field of strength B,, and second in that the 
asymptotic form of Yz from Eq. (23) yields IB,,,,(Jm= R,)I = 1. 

Equations (20) and (21) generalize the low order multipoles given in the referen- 
ces [l-7] to all orders, and both even and odd symmetry about Z = 0, and provide 
a straightforward method for their derivation. 

The algebraic form of the first few of the Y,, multipoles are given in the table at 
the end of this article. They were generated using the REDUCE [9] algebraic 
manipulations program on a DEClO computer. The reduce input file, which allows 
one to generate the algebraic form of these multipoles to large, computer dependent 
order, and Fortran subroutines for numerically evaluating them, are obtainable 
from the authors. 

3. A FURTHER SET OF MULTIPOLES 

The symmetric Greens function for the Grad-Shafranov operator which vanishes 
along the Z axis and at p = cc, obeys 

d:G(R1,ZI, R,,Z,)=2xR16(R,-R,)6(Z,-Z,). (24) 
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In terms of elliptic integrals it is 

G(R,, Z1, R2, Z,)= -(R1;2) 
112 

((2 - KZ) K(K) - WK)), 

where 

(25) 

This Greens function can be shown to have the spherical coordinate expansion 

O” p’ zgcos 6,) zy(cos e,) W,, el, ~2, e2)= --np, sin elp2 sin 8, C -+ 
I-1 P> 1(1+ 1) (26) 

Here p, is the larger of and p < the smaller of pi and p2. 
This expansion does not involve the Q, due to our imposed boundary conditions, 

but does depend on both positive and negative powers of p. The field due to any 
distribution of toroidal current can be found by integrating this expanded Greens 
function times the distribution. The expansion functions form a complete set for the 
expression of any such field in an appropriately restricted domain. Obviously we 
need the H, functions as well as the F,, functions to form a complete set in this 
domain. If we let D, = RF- ’ C, then 

H, = (R2 + Z2)1’2/Ro, 

H,=O, (27) 

H = %f’- ’ F,SR Z) 
n (R2+Z2)fl-1/2’ 

The linear combinations of Eqs. (20) and (21) applied to the H,, with C, = 0, then 
yield an independent set of Y; polynomial multipoles which give upon expansion 
for even n 

y; +@;+, 3~Z-~)” 
mRmp2 0 

and asymptotically redundant contributions to the set of cylindrical multipoles. 
The @z and @; conjugate functions to the !Pz and Yu, are also easily found by 

applying the linear combinations of Eqs. (20) and (21) to the G, and Z,, functions of 
Eqs. (9) and (10) given the additional definitions 

(29) 

I, = -R, 
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and that 

C,=(-l)“&, (30) 

when applying Eq. (21) to the G, while 

z = -(-2)“(m)! 41 
” n!! 3 (31) 

when applying Eq. (21) to the Z, functions. 
The linear combinations of Eq. (20) and (21) when applied to the F, and G, are 

equivalent to those of Shkarofsky [4], whose odd n F,, and G, functions differ from 
those given here by a factor of 2m. Equation (21) does not however depend on the 
PI, H, , Gi , and I, functions which are only given here for completeness. The Y; 
and 0; functions thus defined are an equivalent set to the Y; and @‘,’ in so far as 
the diagnostic technique of Zakharov and Shafranov [3] is concerned. Their use 
ought to provide additional information about the current distribution at a small 
increase in labor with possibly critical consequences if the information being sought 
is the value of the poloidal beta. This generalized approach to magnetics diagnostics 
will not be developed here. 

4. A MULTIPOLE EXPANSION TECHNIQUE 

The validity of a multipole expansion technique for the expression of an applied 
poloidal field is studied in what follows by some examples taken from the Princeton 
Divertor Experiment (PDX). This technique has been used at Princeton Plasma 
Physics Laboratory to help design PBX, TFTR, TFCX, and ISX-B. Here we are 
not attempting to solve for the poloidal field in a given region but rather finding if 
such an expansion can accurately represent an actual field as generated by the PDX 
coil systems. 

As has been stated, the field due to any distribution of toroidal current can be 
reduced to a multipole-like expansion in some source free region of interest by 
integrating over all space the form of the distribution times the expanded Greens 
function of Eq. (26) and truncating the resultant series. For most practical coil 
systems the series derived in this manner is inconvenient as the coils do not lie out- 
side of some region of interest bounded by spheres. The Green’s function derived 
series for a general coil system is in fact several series each of whose domain of 
applicability lies in the region between sucessive spherical coil radii. The Y’+ mul- 
tipoles are complete only in a source free region inside a sphere of finite radius, 
since they are linear combinations of p”PLp i. They can be applied in a strict sense 
only to those devices whose coil systems have this internal hole. Including the Y- 
functions yields a complete set of functions for a source free spherical annulus. With 
n resticted to an integer so as to obtain a finite series expression for the multipoles, 
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the inclusion of the Q, functions would not result in a complete set for domains 
restricted in 8. Even if n were allowed to be complex, the domain in which the P, 
and Q, functions were complete would be of inconvenient shape. 

The multipole expansion technique seeks to replace the Green’s function series 
with one which is asymptotically valid and close to correct at finite aspect ratio. 
This expansion assumes a priori that the coefficients of F,, and H, are constant over 
the domain of interest. These coefficients can be thought of as an average of the 
coefficients of the Green’s function expansion. The global validity of this 
assumption of constancy is not obvious for coils which have intermediate radii. 
However, since the large aspect ratio limit is accurate, the analytic continuation of 
this limit satisfies the operator equation, and for some coils the series is valid we 
may expect to obtain a satisfactory degree of accuracy in a finite region of arbitrary 
shape for many coil systems. 

The necessity for this assumption of constancy arises because we are trying to 
expand a field in a toroidal region with functions which are originally derived in 
spherical coordinates. The trick we have played is to give them at least a partial 
toroidal character by forming appropriate linear combinations. Other expansion 
methods exist which do not have this intrinsic problem, notably those in terms of 
toroidal functions. While the toroidal functions are the more appropriate choice for 
some problems they are not as convenient as the polynomial multipole expansion. 
Further, their convergence rate may be no better in cases which trouble the latter. 

General error criteria for the multipole expansion process are difficult to give as 
they depend on the between coil spacing and the resultant fringing fields. However 
an expansion in only the ul,+ positive power of p multipoles cannot in general be 
expected to well represent those coils which lie on spherical radii less than the 
radius of the region of interest. We therefore study the error introduced by this 
technique in an actual device. 

The PDX device has several independently powered coil systems, among them 
are the equilibrium field (EF) system which produces an almost uniform vertical 
field which counters the radial hoop force of the toroidal plasma current, the diver- 
tor (DF) system which is dominantly octopole and produces poloidal field nulls 
near the plasma surface, and the ohmic (OH) system which drives the toroidal 
plasma current and in the vicinity of the plasma gives a weak leakage field of mixed 
character. A further contribution to the applied poloidal field is that of the eddy 
currents induced in the vacuum vessel and coil cans. For the present comparison 
these were not measured but instead inferred from a slab metallic elements model 
image current code. 

In each case we numerically generate the exact poloidal flux in a subregion of the 
PDX device due to a given coil system using an accurate numerical approximation 
to the Greens function of Eq. (25). We then lit to obtain the coefficients B,+ , B; of 
a multipole expansion of the form 

!P(R, 2) = f B,+ Y;(R, Z, R,) + B, Y;(R, Z, R,). (32) 
n = 0.2,4,... 
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We pick as our expansion point R. = 1.4 meters, the nominal center of PDX and 
choose our subregion to have an aspect ratio A z 3.0, and consider only the mul- 
tipoles with even symmetry about the midplane. We compare the results of first 
assuming all the B; to be zero and truncating the series at N = 16 (hexadecapole) 
to those obtained by truncating the series at N= 8 (octapole), but including both 
terms. 

While our expansion functions are linearly independent, they are not orthogonal 
when their products are integrated over the subregion except at large aspect ratio, 
where the !J’; and Y; become degenerate sets of orthogonal functions. At finite 
aspect ratio a simple least squares fit of (32) while giving a small overall error 
which decreases with the truncation number of the expansion, yields coefficients 
which fluctuate with truncation number as pairs of high order multipoles subtract 
to give low order contributions confusing the intepretation of which multipoles are 
dominant. Regularization of the simple least squares lit by finding that expansion 
point R,, which minimizes some spectral measure of the expansion does not sub- 
stantially improve this fluctuation. 

A fitting method which avoids this problem and gives intuitively agreeable results 
as to which multipoles are dominant in the field proceeds as follows: 

I. A constant equal to the exact flux at R, is subtracted from the function 
being fitted. 

II. The appropriate amount of dipole multipole (either Yc or Y; can be 
used) which brings the field null to R, is subtracted. 

III. The resultant function is individually fitted in turn to each of the mul- 
tipoles of order n = 4 (quadrapole) or greater in our expansion set. The particular 
multipole which gives the best fit in the least squares sense and the smallest mean 
square error is singled out and subtracted to give a residual function. This best fit 
multipole is then deleted from the expansion set. 

IV. This residual function is then analyzed as in step III using the remainder 
of the functions in the expansion set. Each multiple is individually fit to the residual 
function. That single multipole which now best fits the residual function is subtrac- 
ted from it and deleted from the expansion set. Step IV is then repeated until all of 
the multipoles in the expansion set are exhausted. 

This fitting procedure is equivalent to first doing Gram-Schmidt orthogo- 
nalization of the expansion functions in a particular order and then doing a 
simultaneous least squares fit. In practice it extracts the multipoles in an order 
which agrees with intuition as to their relative dominance in the field pattern. The 
final error obtained is equivalent to that gotten with a simultaneous least squares 
fit. At large aspect ratio, the multipoles of positive and negative power of p depen- 
dence become degenerate. The fitting method still works but the selection of mul- 
tipoles of one set over the other is arbitrary. 

Usually the minimum error is almost achieved with the extraction only a few 
(two or three) multipoles of order n = 4 or higher, the extraction of the remaining 
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multipoles in the expansion set then reduces the error only slightly. With the excep- 
tion of the DF system, for reasons discussed later, the flux due to all of the PDX 
coil systems may be lit to maximum errors of around one percent and mean square 
errors of a few tenths of a percent. However, for all of the coil systems the inclusion 
of the Y; multipoles reduces both errors by a factor of two, even when the same 
total number of expansion functions is used, as might have been expected from the 
completeness property of the combined set. In what follows we quote only the 
results due to the combined tit, and use as a convenient measure of the field 
strength due to each multipole, the half aspect ratio quantity (2/A)” - ‘B,. We nor- 
malize by the dominant multipole field strength and give the power of p dependence 
as a sign in parentheses. 

0.8 

-0,8 

FIG. 2. The ohmic coil system (OH) leakage field. The box in the center is the subregion in which 
the lit to the poloidal flux is made. Solid lines are contours of the exact flux while dotted lines are con- 
tours of the multipoles expansion fit at the same values. 
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The EF field is well represented by the expansion with a root mean square error 
of two tenths of one percent and is dominantly dipole (1.0) in character with small 
contributions of (+ ) quadrapole (-0.16) and (+ ) hexapole (0.013). 

Figure 2 shows the leakage field due to the ohmic heating solenoid. The sub- 
region considered is the box in the center of the plot, The solid lines are contours at 
equal flux increments of the exact flux, while the dotted lines are contours of the 
multipoles fit at the same values. The relatively large displacement of the multipoles 
expansion contours from their exact counterparts OS due to the weak field gradient 
as the rms error is small (3Se-04) and the field is well represented. The ohmic 
leakage field is dominantly (+ ) quadrapole (1.0) with (+ ) dipole contributions of 
-0.39 and (-) quadrapole of 0.39. 

Figure 3 shows an equivalent plot for the PDX divertor coil system (DF) which 

-.- 
On6 0.8 1,o ln2 1,4 1,6 1.8 2nO 2,2 2,4 

X (METERS) 
FIG. 3. The divertor coil system (DF) field when compared with the best lit multipoles expansion 

shows the inadaquacy of the latter when coils are too near the expansion region. 
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is purposely included here as an example of poor performance of the multipole 
expansion method. The rms error is large (0.2), and the field is mostly ( + ) octopole 
(l.O), with some (- ) octopole (-0.18) and (- ) hexapole (0.16). This field is 
poorly represented because the subregion lies too near the coils which produce this 
field and the multipole expansion can converge, if at all, only slowly, i.e., as 
(pJp >)“. The error could be reduced by shrinking the subregion but the plasmas of 
interest soon would not lit in. In reaction design this problem may not occur as 
poloidal field coils must usually lie outside the toroidal field coils. However designs 
which depend on very strong shaping of the plasma as, for example, the bean 
shaped plasma of some recent devices, could not be studied solely with a multipole 
expansion method. 

1.0 

0,8 

0,6 

-On6 

-0.8 

-1,O i 
On6 On8 1‘0 1,2 la4 186 la8 2,O 2,2 2.4 

X (METERS) 

-I 

FIG. 4. The magnetic field produced by image currents at f = 50 ms in a PDX shot as calculated with 
a slab metallic elements model eddy current code (solid lines) and the multipoles expansion tit (dotted 
lines). 

581/64/2-i I 
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TABLE I 

Multipoles 

Y: = (271) R& even nullapole 
o,+=o 

Y: = 0, odd nullapole 
@: = -(2x) R. 

!P; = (2n)(RZ - Ri)/2, even dipole 
Q-J; = -(2n) 2 

Y; = (2n)(R2E)/Ro, odd dipole 
@; = (2n)(R2 - 2Z2 - R;)/(2R,) 

ul,+ = (n)(R4 - 4R2Z2 - 2R2Ri + Ri)/(4Ri), even quadrapole 
@: = (I[) Z( - 3R2 + 2Z2 + 3R;)/(3R;) 

Y; = (n) R2Z(3R2 - 4Z2 - 3R$/(3Ri), odd quadrapole 
0: = (n)(3R4 - 24R2Z2 - 6R2R; + 8Z4 

+ 12Z2R;+3R,$/(12R;) 

Y; = (2x13)(R6 - 12R4Z2 - 3R4R; + 8R2Z4 
+ 12R2Z2Ra + 3R2R$ - Rz)/8Ri), even hexapole 

06’ = (2x/3) Z( - j5R4 + 40R2Z2 + 30R2R; - 8.Z4 
- 20Z’R; - lSR;)/(20R;) 

Y; = (2x/3) R2Z( 15R4 - 60R2Z2 - 30R2R; + 24Z4 
+ 40Z2Ri + 15Ri)/(20Ri), odd hexapole 

@; = (2n/3)(5R6 - 90R4Z2 - 15R4R; + 120R2Z4 
+ 120R2Z2R;+ 15R2R;- 16Z6-40Z4R; 
- 30Z2R; - 5R;)/(40R;) 

Y’8’ = (n/2)(5R8 - 120R6Z2 - 20R6R; + 240R4Z4 
+ 240R4Z2R; + 30R4RA - 64R2Z6 - 160R2Z4R; 
- 120R2Z2Ri - 20R2Rg + 5Rf$(80Rz), even octopole 

@s’ = (7[/2) Z( -35R6 + 210R4Z2 + 105R4R; - 168R2Z4 
-280R2R;-105R2R;+16Z6+56Z4R; 
+ 70Z’R; + 35R;)/(70R;) 

Yv,t = (n/2) R2Z(35R6 - 280R4Z2 - 105R4R; + 336R2Z4 
+ 420R2Z2R; + 105R2R; - 64Z6 - 168Z4R; 
- 140Z2Ri - 35Rg)/(70R,$, odd octopole 

@9’ = (n/2)(35RS- 1 120R6Z2 - 140R6R; + 3360R4Z4 
+ 2520R4Z2R; + 210R4R; - 1792R2Z6 - 3360R2Z4 R; 
- 1680R2Z2R;-140R2R~+128Z8+448Z6R; 
+ 560Z4R; + 280Z2R; + 35R;)/(560R,$ 

Yu:, = (2n/5)(7R1° - 280RsZZ- 35R’R; + 1 120R6Z4 
+840R6Z2R;+70R6R;-896R4Z6-1680R4Z4R; 
- 840R4Z2R; - 70R4R; + 128R2Z8 + 448R2Z6R; 
+ 560R2Z4Rd + 280R2Z2R$ + 35R2Ri - 7Rh”)/(224Ri), even decapole 

@&,= (2n/5) Z( -315R* +3360R6Z2+ 1260R6R;-6048R4Z4 
- 7560R4Z2R; - 1890R4Ri + 2304R2Z6 + 6048R2Z4R; 
+ 5040R2Z2R; + 1260R2R; - 128Z* - 576Z6R; 
- 1008Z4R; - 840Z2R$ - 31 SR;))/( 1008R;) 

Table continued 
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TABLE I-Continued 

‘P:, = (2n/5) R2Z(315R8-4200R6Z2 - 1260R6R;+ 10080R4Z4 
+ 10080R4Z2R; + 1890R4R; - 5760R2Z6 - 12096R2Z4R; 
- 7560R2Z2R; - 126OR’R; + 64OZ* + 2304Z6R; 
+ 3024Z4Ri + 1680Z2Ri + 315Ri)/( 1008R~), odd decapole 

@A = (2n/5)(63Rl” - 3150R8Z2 - 315R8R; + 16800R6Z4 
+ 10080R6Z2R; + 630R6R$ - 20160R4Z6 - 30240R4Z4R; 
- 11340R4Z2R;-630R4R~+5760R2Z8+16128R2Z6R; 
+ 15120R2Z4R;+ 504OR’R;f 315R2R;-2562” 
- 1152Z’R; - 2016Z6R; - 1680Z4Ri - 630Z2R; 
- 63Rh”)/(2016R;) 

Y,y = (2a) pR,, even nullapole 
@JO = (2~) I,(O) R; 

YT = 0, odd nullapole 
@; = - (271) R,, 

!R, = (2~) R,( -p4 + R2Ri)/(2p3), even dipole 
@; = (2n)( -I,(0) Rip’ + ZR;)/(2p3) 

Y; = (2n)(R2ZRi)/(p5), odd dipole 
@F = (2n) R,(p’- R2R; + 2Z2R;)/(3p5) 

YT = (n) R,(p* - 2R6R; - 4R4Z2R; + R4R; 
- 2R2Z4Ri - 4R2Z2Ri)/4p7), even quadrapole 

@c = (n)(&,(O) Rip’+ ZR;( -2p4 
+ 3R*R; - 2Z2R;)/(4p7) 

Yy, = (n) R’ZRi( - 3p4 + 3R2Ri - 4Z2R,$(3p9), odd quadrapole 
@r = (n) R,( -2p* + 5R6R; - 3R4R; - 15R2Z4R; 

+ 24R2Z2R; - 10Z6R; - 8Z4R;)/(15p9) 

Y’, = (2n/3) R,( -p” + 3R’OR; + 12R8Z2R; - 3R8R; 
+ 18R6Z4R; + 6R6Z2R; + R6R; + 12R4Z6R; 
+ 21R4Z4R; - 12R4Z2R; f 3R2ZSR; + 12R2Z6R; 
+ 8R2Z4Rg)/(8p”), even hexapole 

@; = (2n/3)( -31,(e) Rip” + ZR;(9ps 
-27R6R&36R4Z2R;+15R4R;+9R2Z4R; 
- 4OR’Z’R; + 18Z6R; + 8Z4R;))/(24p”) 

Note. The normalization factor of this paper is given for convenience as the first term in every for- 
mula. 

Figure 4 illustrates the multipole expansion as applied to the eddy current fields 
arising in PDX from currents flowing in the vacuum cans which surround the diver- 
tor coils and the vacuum vessel early (t = 50 ms) in a PDX shot. The rms error is 
small (5.0e - 03) and the field is ( + ) dipole (1.0) plus ( + ) quadrapole ( - 0.41) and 
( - ) quadrapole ( - 0.07). 
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5. CONCLUSIONS 

In conclusion, a new and coherent method has been given for deriving the !PT 
multipole solutions of the homogeneous Grad-Shafranov operator equation to 
arbitrary order for both even and odd symmetry. This method connects the mul- 
tipoles to well-known solutions of the vector Laplace’s equation and this connec- 
tion has resulted in the derivation of a new set of !P; multipoles. Together with the 
previously known set these provide a more accurate basis for the expansion of 
arbitrary solutions of the homogeneous Grad-Shafranov operator equation subject 
to natural boundary conditions. This new set may be useful in magnetic diagnosis 
of the equilibrium state of the plasma. The new functions are of definite use in the 
approximation of applied poloidal fields as an expansion in terms of these mul- 
tipoles, where they allow a more accurate representation to be made. 
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